Improving Transit Access for the Blind and Vision Impaired

James R. Marston
Reginald G. Golledge

Reprint
UCTC No. 476
The University of California
Transportation Center

The University of California Transportation Center (UCTC) is one of ten regional units mandated by Congress and established in Fall 1988 to support research, education, and training in surface transportation. The UC Center serves federal Region IX and is supported by matching grants from the U.S. Department of Transportation, the California Department of Transportation (Caltrans), and the University.

Based on the Berkeley Campus, UCTC draws upon existing capabilities and resources of the Institutes of Transportation Studies at Berkeley, Davis, Irvine, and Los Angeles; the Institute of Urban and Regional Development at Berkeley; and several academic departments at the Berkeley, Davis, Irvine, and Los Angeles campuses. Faculty and students on other University of California campuses may participate in Center activities. Researchers at other universities within the region also have opportunities to collaborate with UC faculty on selected studies.

UCTC's educational and research programs are focused on strategic planning for improving metropolitan accessibility, with emphasis on the special conditions in Region IX. Particular attention is directed to strategies for using transportation as an instrument of economic development, while also accommodating to the region's persistent expansion and while maintaining and enhancing the quality of life there.

The Center distributes reports on its research in working papers, monographs, and in reprints of published articles. It also publishes Access, a magazine presenting summaries of selected studies. For a list of publications in print, write to the address below.

DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated under the sponsorship of the Department of Transportation, University Transportation Centers Program, in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof.

University of California
Transportation Center

108 Naval Architecture Building
Berkeley, California 94720
Tel: 510/643-7378
FAX: 510/643-5456

The contents of this report reflect the views of the author who is responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the State of California or the U.S. Department of Transportation. This report does not constitute a standard, specification, or regulation.
Improving Transit Access for the Blind and Vision Impaired

James R. Marston
Reginald Golledge

Department of Geography
University of California
Santa Barbara, CA 93106

Reprinted from
Intellimotion
Vol 7, no 2, pp 4-5 & 11 (1998)

UCTC No 476

The University of California Transportation Center
University of California at Berkeley
Our research identifies and evaluates a new technology to allow safe and easy access for the blind and vision impaired.

Signs, both written and iconic, guide us through unknown environments. We use them to identify street intersections, buildings, transit stops, different transit vehicles, and amenities such as telephones, fare, and information booths. People who can't read signs — the dyslexic, the illiterate, the developmentally disabled, people with brain trauma — experience difficulty traveling through unknown territory. The 8.9 million blind and visually impaired people in the United States face greater problems. They do not get the information embedded in signs, and receive few other cues to the environment around them. They are denied cues about pathways and traffic flows, both vehicle and pedestrian. They can't see buses or other transit vehicles, can't find doors, elevators, and other building amenities. This lack of easy and safe access to urban travel and public transit is certainly one reason why only 26 percent of working-age people who can't read newsprint are employed.

How can we improve access for these groups? The Americans with Disability Act of 1990 mandated equal access for all to transit and public buildings. Ramps, curb cuts, and lifts have replaced structural barriers, such as stairs and curbs, for those in wheelchairs. But print-handicapped and vision-impaired people still face functional barriers to equal access. How do blind people find their way, facing these problems of mobility, wayfinding, and exploration? Long canes and guide dogs help a person avoid objects and danger within a few feet, but give no cues to the more distant environment. If a person can't find a bus stop, identify a transit vehicle, or find a building or its entrance, they are denied equal access to transit and public buildings.

Our research identifies and evaluates a new technology to allow safe and easy access for the blind and vision impaired. Remote Infrared Signage Systems (RISS), or Talking Signs®. Each of these signs consists of an infrared transmitter that continuously beams a signal. A hand-held receiver picks up the beam and converts it into a spoken message that can be heard when the receiver is pointed at the transmitter. This gives the user a directional beam to the sign, as well as the sign's content or name.

Test 1-A

We conducted two tests, using 10 blind subjects and 10 blindfolded sighted subjects. The first involved walking around a simple geometric path, either a 60' x 60' (18m x 18m) square or a 60' x 30' (18m x 9m) rectangle. A 36" (1m) high stanchion marked each corner of the shape. Subjects were led around the path three times using sighted guide techniques. Subjects swung a long cane ahead as they walked in order to help find the stanchion. Subjects identified the shape as they walked, and then were asked to walk the path on their own. They were pointed at the first stanchion, but received no further information during each attempt. People in the baseline condition made two attempts to recreate the path in a forward direction and one attempt in the reverse direction. If the stanchion was not found within 60 seconds, subjects were told to stop and search for the next stanchion. Response times, angle, and distance errors were recorded for all stanchions.

Test 1-B

We next tested our 20 subjects using a Remote Infrared Signage System (Talking Signs®). After five minutes of hands-on training, the subjects were led around a different geometric shape one time and identified the shape. They were then given the receiver and retraced their path on their own. After one forward path retrace, they retraced the path in the reverse direction. The results were very significant: all 20 subjects found every stanchion. There were no significant differences.

Our research identifies and evaluates a new technology to allow safe and easy access for the blind and vision impaired.
was therefore no angle or distance error. Average response times for retracing the rectangle were 205 seconds without Talking Signs® and fell to 71 seconds with them, a difference of 134 seconds or 65% less time to walk the same path. The results were significant at the 0.0001 level.

Bus Test

The next day, our subjects were blindfolded and taken to the university's bus circle. This busy bus stop is used by over 5000 riders per day and is served by nine different bus lines, so there are often several buses waiting at the circle. Three RISS transmitters were set up to guide subjects around the test path, halfway around the circular sidewalk. All subjects were walked around the half circle two times for practice. This task was made more difficult because there were no straight lines, and a planter and tree were in the middle of the path. The subjects also had to cross two access drives.

Two buses on the Number 9 line were equipped with RISS transmitters, which were installed on the front and side window, directly to the rear of the door. Subjects were told where on the bus the two receivers were located, but were not given any practice in locating the door. In the first trial, subjects waited at the start position, and as each bus was heard coming into the circle they pointed the receiver at the sound. When their receiver picked up the message from the Number 9 bus, they began walking toward the transmitters that guided them along the sidewalk. The verbal message broadcast by those signs said “Sidewalk to Bus Stop.” When the subjects got to the bus stop area, they began to scan for the transmitter on the side of the bus. The task ended when they reached the proper bus and put their cane inside the doorway. Response times from first identifying the bus to reaching the doorway were recorded.

In the second bus trial, subjects used their normal techniques, which meant asking a passerby (the researcher) which bus was coming. Subjects then walked from the start position to the bus stop. Here they had to find the door and then ask the driver which bus it was. If it was the proper bus, the trial stopped. If it was the wrong bus, they walked to the next bus in line and asked again for confirmation. (This is what happens in real life at busy bus stops. A blind person must approach each bus and ask the driver which bus it is.)

The third bus trial was identical to the first. Table 1-A shows the number of people that found the proper bus. The success rate when using the Remote Infrared Signage System is clearly evident. A nominal logistic model (Table 1-B) comparing success rate continued on page 11.

<p>| Table 1-A |
| Success at Finding Proper Bus (Success / Attempts) |</p>
<table>
<thead>
<tr>
<th>Blind</th>
<th>Blindfolded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trial 1 (RISS)</td>
<td>10/10</td>
</tr>
<tr>
<td>Trial 2 (No RISS)</td>
<td>8/10</td>
</tr>
<tr>
<td>Trial 3 (RISS)</td>
<td>10/10</td>
</tr>
</tbody>
</table>

| Table 1-B |
| Nominal Logistic Model |
| Success by Vision (Blind/Sighted) and Aid (RISS/No RISS) |
Both	DF = 2	Chi Sq = 22.24	Sig = 0.0001
Vision	DF = 1	Chi Sq = 10.08	Sig = 0.0015
Aid	DF = 1	Chi Sq = 6.80	Sig = 0.0091

Left: Bus test—Talking Signs® transmitters were installed on front and side of buses on the #9 line at UCSB. Blind or blindfolded subjects used receivers to find the correct bus. Above: Prof. Golledge and PATH researcher Robert Tam demonstrate Talking Signs® system.
Improving Transit Access for the Blind and Vision Impaired

continued from page 5

to vision (B/S) and aid (RISS/No RISS) was highly significant. This model shows the significance of the success rate compared to the person's sight, the use of the Talking Signs® aid, and the combination of both of these variables.

Most of our blind subjects had been blind most or all of their lives and were very experienced and independent travelers, with their own tested mobility procedures. The blindfolded sighted subjects were more like newly or untrained blind people. The mean response time for the blindfolded sighted without the aid was 243 seconds and 172 seconds using the RISS.

The quantitative portion of the experiment showed that there is a significant difference in response times and performance when using a Remote Infrared Signage System. The last part of our experiment was to collect qualitative data from post-test interviews. We first asked general questions about how subjects felt about using the Talking Signs® RISS. Using a five-point scale for agreement or disagreement, we asked if the system relieved stress or reduced cognitive load; if the signs were helpful when navigating known and unknown spaces, identifying street corners, and finding bus stops and buildings, and finally, if the subjects would use such a system if installed. Ninety-five percent (95%) indicated agreement. Next we asked about the ease of understanding and finding the signs, if the subjects would use them at bus stops, and if finding unfamiliar bus stops was easier than by the subjects' usual method. We also asked if the bus auditory messages were easy to pick up, if the messages made it easy to find the right bus, if the subjects would use them on buses, and if it was easier to find the right bus than by using their usual method. On a five-point scale from “strongly agree” to “strongly disagree,” no subjects indicated disagreement on any of these points.

We also asked open-ended questions. The first was “Where would you like to see Talking Signs® used?” One subject, an Orientation & Mobility (travel techniques for the blind) instructor, summed it up by saying, “Wherever visual signs are used.” All subjects made many suggestions, including all forms of transit, intersections, and many kinds of buildings. We then asked, “What was your opinion of Talking Signs®?” The results were extremely positive. Subjects called the signs great, superb, the best thing yet for the blind, and so on. Many people mentioned how they gained confidence and independence using them.

Our last question was “How does using Talking Signs® differ from your regular method of mobility?” Responses to this question were also very positive, many people said how much easier the system was, that they felt less stress, and mostly they mentioned how much more independent they felt, not having to ask others for help.

Our quantitative results show strong significant results when using a RISS. User feedback was overwhelmingly positive. We conclude that Remote Infrared Signage Systems should be adopted to erase the functional barriers that the blind, dyslexic, developmentally disabled, illiterate and others face daily when trying to access the built environment.

Intellimation