Travel, Emissions, and Welfare Effects of Travel Demand Management Measures

Caroline J Rodier
Robert A Johnston

UCTC
No 433
The University of California Transportation Center

The University of California Transportation Center (UCTC) is one of ten regional units mandated by Congress and established in Fall 1988 to support research, education, and training in surface transportation. The UC Center serves federal Region IX and is supported by matching grants from the U.S. Department of Transportation, the California Department of Transportation (Caltrans), and the University.

Based on the Berkeley Campus, UCTC draws upon existing capabilities and resources of the Institutes of Transportation Studies at Berkeley, Davis, Irvine, and Los Angeles, the Institute of Urban and Regional Development at Berkeley, and several academic departments at the Berkeley, Davis, Irvine, and Los Angeles campuses. Faculty and students on other University of California campuses may participate in Center activities. Researchers at other universities within the region also have opportunities to collaborate with UC faculty on selected studies.

UCTC's educational and research programs are focused on strategic planning for improving metropolitan accessibility, with emphasis on the special conditions in Region IX. Particular attention is directed to strategies for using transportation as an instrument of economic development, while also accommodating to the region's persistent expansion and while maintaining and enhancing the quality of life there.

The Center distributes reports on its research in working papers, monographs, and in reprints of published articles. It also publishes Access, a magazine presenting summaries of selected studies. For a list of publications in print, write to the address below.

University of California Transportation Center

108 Naval Architecture Building
Berkeley, California 94720
Tel. 510/643-7378
FAX 510/643-5456

The contents of this report reflect the views of the author who is responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the State of California or the U.S. Department of Transportation. This report does not constitute a standard, specification, or regulation.
Travel, Emissions, and Welfare Effects of Travel Demand Management Measures

CAROLINE J. RODIER AND ROBERT A. JOHNSTON

Land-use intensification measures and pricing policies are compared and combined with high-occupancy vehicle (HOV) lane and light-rail transit expansion scenarios in the Sacramento, California, region and evaluated against travel, emissions, consumer welfare, and equity criteria. A state-of-the-practice regional travel demand model is used to simulate the travel effects of these scenarios. The Small and Rosen method of obtaining consumer welfare is applied to the mode-choice models in the travel model. The scenarios are evaluated against travel, emissions, total consumer welfare, and equity criteria.

LITERATURE REVIEW

Considerable research has been done in the United States and elsewhere on TDMs, which may be generally categorized as land-use and travel-pricing measures. A number of studies have found that higher density cities reduce VKT per capita (5–8). Studies of higher densities near transit indicate reductions in automobile travel on the order of 4 percent over 30 years in the Seattle region (7), 14 percent over 20 years in Portland, Oregon (9), and 20 percent over 20 years based on a review of several simulation studies in the United States (10, 11). Other studies indicate that land-use measures effectively reduce automobile travel or are made more effective when combined with travel-pricing policies or improved transit and walk and bike facilities (6, 12). In general, reduced emissions are assumed to be achieved by reducing automobile travel. However, Watterson (7), in a study of the Seattle region, found that the concentration of travel in higher density centers left the peripheral areas less congested. As a result, people traveled farther in those areas and the anticipated reductions in emissions were not achieved.

Many studies indicate travel-pricing measures to be effective at reducing automobile travel and emissions. Cameron’s simulation study of automobile pricing in Southern California (13) found that VKT could be reduced by about 12 percent and pollutants could be reduced by about 20 percent with a peak-period road congestion charge of $0.15 per 1.6 km (1 m), employee parking charges of $3 per day, retail and office parking charges of $0.60 per hour, and fees averaging $1.10 per year per vehicle, and deregulated transit services. Wilson and Shoup’s empirical studies (14) of large employer sites indicate 20 to 30 percent reductions in commutes to sites when employees pay fully for their parking.

Other studies indicate the effects of pricing automobile travel vary according to the quality of the alternative modes available and the nature of the charging scheme. May and Scheurenstuhl (15) reviewed evidence, including the Singapore downtown congestion charge of $2.50, which reduced morning downtown-bound traffic by about 44 percent, and the Bergen, Oslo, and Trondheim toll rings, which charge from $0.80 to $1.60 per trip all day and reduced traffic by only a few percentage points.

An international comparison performed with travel and land-use models found that pricing policies were more effective when accompanied by density increases near transit, improved transit service, and slower automobile speeds (6). Jones’s review of congestion charges in Europe (16) found that, in low-density urban regions with poor transit service, peak-period tolls are most likely to spread the peak and suppress trips than to cause a switch in

Institute of Transportation Studies, Division of Environmental Studies, University of California, Davis, Calif 95616
modes. If densities are high, good transit service is available, and road charges are high, then mode switching was predicted to be the prevalent response. Moggridge (17) points out that pricing may not be effective in very large urban areas with excellent transit service where pricing automobile use at peak periods per se may not reduce VKT because of pent-up demand.

Road pricing has been advocated by economists for decades. Morrison’s review of the literature (18) indicates a large potential welfare benefit from road charges. Starkie’s review (19) finds that economic efficiency requires carpool or bus-only lanes to speed up local and express bus transit, more rail transit, and toll roads as well as free roads, all to improve competition among modes.

Studies have indicated that tolls can benefit all income groups (20, 21). Small’s recent paper (22) develops a spending program for anticipated revenues from Southern California pricing policies (13). He demonstrates financial benefits to all consumers when pricing policies are combined with tax rebates and transit improvements.

METHODS

Travel Demand Modeling

This study uses the 1994 Sacramento regional travel demand model (SACMET 94) (23). The model was developed with a 1991 travel behavior survey conducted in the Sacramento region. Some of the key features of this model are the following:

1. Model feedback of assigned travel impedances to the trip distribution step,
2. Automobile ownership and trip generation steps with accessibility variables,
3. Joint destination and mode-choice model for work trips,
4. Mode-choice model with separate walk and bike modes, walk and drive access modes, and two carpool modes (two and three or more occupants),
5. Land use, travel time and monetary costs, and household attribute variables included in the mode-choice models,
6. All mode-choice equations in logit form,
7. Trip assignment step that assigns separate a.m. peak, p.m. peak, and off-peak periods, and
8. HOV lane-use probability model.

Emissions Model

The California Department of Transportation’s Direct Travel Impact Model 2 (DTIM2) and the California Air Resources Board’s EMPAC7F model were used in the emissions analysis. The outputs from the travel demand model used in the emissions analysis included the results of assignment for each trip purpose by each time period (a.m. peak, p.m. peak, and off peak). The Sacramento Area Council of Governments (SACOG) provided regional cold-start and hot-start coefficients for each hour in a 24-hour summer period.

Consumer Welfare Model

Kenneth Small and Harvey Rosen (1) show how a consumer welfare measure known as compensating variation (CV) can be obtained from discrete choice models.

\[
CV = -1 / \lambda_v \left(\ln \sum_{m \in M} e^{V_{m}(p_0)} - \ln \sum_{m \in M} e^{V_{m}(p_f)} \right)
\]

where \(\lambda_v \) is the individual’s marginal utility of income, \(V_m \) is the individual’s indirect utility of all m choices, \(p_0 \) indicates the initial point (i.e., before the policy change), and \(p_f \) indicates the final point (i.e., after the policy change). The change in indirect utility is converted to dollars by the factor, \(\frac{1}{\lambda_v} \), or the inverse of the individual’s marginal utility of income. Small and Rosen show how marginal utility of income can be obtained from the coefficient of the cost variable in discrete choice models.

The compensating variation formula (1) from above was adapted to suit the specifications of the SACMET 94 mode choice models. In these models, households are segmented into income/worker categories and person trips are generated for those categories. To obtain compensating variation for each income/worker category \(h \) the following formula was applied for all modes \(m \) and for all trips \(Q \) between all origins \(s \) and all destinations \(t \):

\[
CV_s = -1 / \lambda_v \left(\ln \sum_{m \in M} \left(\sum_{p \in P} \left(\ln \sum_{n \in N} e^{V_{n}(p, s)} * Q_{n,p} \right) \right) - \ln \sum_{m \in M} \left(\sum_{p \in P} \left(\ln \sum_{n \in N} e^{V_{n}(p, s)} * Q_{n,p} \right) \right) \right)
\]

where \(\lambda_v \) is provided by the coefficient of the cost variable in the mode choice equations. Total compensating variation was obtained by summing the compensating variation obtained from each income/worker group. Estimates of the marginal utility of net household income by trip purpose used in the compensating variation calculations are presented in Table 1. The distribution of income used in the SACMET 94 model is empirical. Net income, not gross income, is used in the SACMET 94 mode-choice model.

Some Issues of Uncertainty in Methods of Analysis

SACMET 94 uses fixed zonal land use projections, the effect of changes in travel accessibility on population and employment location is not simulated in the model. As a result, the model

<table>
<thead>
<tr>
<th>Income Groups</th>
<th>Home-Based Work</th>
<th>Home-Based Shop and Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income Group 1 (0 to $10,000)</td>
<td>0 5399</td>
<td>1 0900</td>
</tr>
<tr>
<td>Income Group 2 ($10,001-$35,000)</td>
<td>0 2764</td>
<td>0 5580</td>
</tr>
<tr>
<td>Income Group 3 ($35,001 and above)</td>
<td>0 1372</td>
<td>0 2770</td>
</tr>
</tbody>
</table>
underestimates induced automobile travel as a result of major roadway capacity expansions and reduced automobile travel because of transit investments and pricing policies.

SACMET 94 is fully iterated on travel impedances with full feedback of travel from the trip assignment step to the trip distribution step. Thus, the model assumes system equilibrium, an elasticity of demand with respect to a capacity of about 1.0. If the actual transportation system does not attain complete equilibrium (as some research suggests), the model would exaggerate the trip length in scenarios with expanded roadway capacity. However, this exaggeration may be offset by the failure to represent changes in land use resulting from transportation policies.

In SACMET 94, the trip assignment step is sensitive only to travel times on roadways and not to travel costs. Thus, a toll on a specific route would cause mode shifts but not route shifts, and the model may slightly overestimate mode shifts and underestimate route shifts. However, this bias is minimal for the results of peak-period tolls in this study because of the small portion of commute trips on congested roads and the low average toll ($0.05).

The propensity for automobile drivers to switch to transit and HOV modes in the presence of higher automobile travel time and cost is probably underestimated in the SACMET 94 model. This is an artifact of the cross-sectional data used to estimate the model. Sacramento currently has minimal transit service, one relatively short HOV facility, and comparatively low land-use densities (compared with urban areas with high transit use), and thus cross-sectional data on travel behavior collected in this area would contain little variation in transit and HOV mode choice. In addition, if land-use densities increased, transit and HOV use probably would be underestimated.

Because of the issues of uncertainty related to the methods used in this paper, predicted values should be used only to rank order scenarios for sketch planning purposes.

ALTERNATIVES MODELED

No-Build

In this alternative, new HOV lanes and transit projects listed in the Sacramento Region's 1993 Metropolitan Transportation Plan (MTP) and included in SACOG's 2015 network files were removed. Road widening and new interchange projects were maintained in the network files.

Light-Rail Transit

New light-rail transit projects listed in the 1993 MTP (approximately 98.4 track km) were added to the no-build network.

HOV Lanes

This alternative adds all new HOV lanes described in the 1993 MTP (approximately 295.2 lane km) to the no-build network.

Pricing and No-Build

Peak-period road pricing, parking pricing, and a fuel tax were added to the no-build network in this alternative. The peak-period road pricing charge on home-based work trips was set at 10 cents per 1.6 km (1 mi) on freeways and expressways with levels of service E and F. Parking pricing was represented in the model by doubling existing average daily parking charges and by adding a $2.00 parking charge to zones without parking charges. The fuel tax in this scenario is $2.00 per 3.8 L (1 gal). The long-run elasticity of demand for travel with respect to fuel cost is about -0.3 because of a shift to vehicles with higher kilometers per gallon. As a result, the fuel tax is adjusted to $0.60 per 3.8 L. The fleet was assumed to travel 32 km (20 mi) per 3.8 L. Hence, for every 1.6 km, the automobile operating cost was increased to 3 cents.

Pricing and Light-Rail Transit

In this alternative, peak-period road pricing, parking pricing, and a fuel tax were added to the light-rail transit network.

Pricing and HOV Lanes

Peak-period road pricing, parking pricing, and a fuel tax were added to the HOV lane network in this alternative.

Super Light-Rail and Transit Centers

Light-rail lines were extended to cities toward the western edge of the urban area (Woodland and Davis), two new lines were added in the southern area of the region, and three concentric lines were added in central areas of the region (Carmichael, Rancho Cordova, Fair Oaks, and Citrus Heights areas). Feeder bus routes were added or extended to serve the new lines. In addition, headways on all bus and light-rail routes were reduced by one-half.

Transit centers were represented in the model by moving growth in households, retail employment, and nonretail employment from 1990 to 2015 in the outer zones (farther than 4.8 km or 3 mi from light-rail lines) to within a 1.6-km radius of the light-rail stations until the density cap (15 households per 0.4 hectare, 10 retail employees per 0.4 hectare, and 20 nonretail employees per 0.4 hectare) was met (0.4 hectare = 1 acre). The ratios of the household classifications were held constant in all zones in the input files, and thus only the total number of households changed in the zones. This did not change the total number of households or the number of households in each income class. Forty-five transit centers were created with increased household growth of 10.6 percent, retail growth of 84 percent, and nonretail growth of 68 percent in the centers. The pedestrian environmental product was increased in all zones within the transit center radius and the zonal location of school enrollment was adjusted to correspond to changes in household location.

FINDINGS AND DISCUSSION

Travel Results

The results of the daily travel projections for the year 2015 scenarios in the Sacramento region are presented in Table 2. The only scenarios that resulted in significantly reduced vehicle trips were those that included pricing policies; the changes in trips for all other scenarios were small enough to be considered not significantly different.
from the no-build scenarios. When combined with pricing policies, the no-build and light-rail scenarios produced a slightly greater reduction in vehicle trips (−7 percent) than did the HOV scenario (−5 percent).

With respect to VKT, the pricing policies as a group provided the greatest reduction from the no-build scenario, however, the addition of pricing to the no-build and light-rail scenarios produced greater reductions in VKT (−9 and −10 percent, respectively) than the addition of pricing to the HOV scenario (−6 percent). The change in VKT for the light-rail scenario is negligible, but the super-light-rail and transit centers scenario produced a reduction in VKT of 4 percent. The HOV scenario resulted in a VKT increase of 3 percent.

All scenarios tended to reduce vehicle hours of delay (VHD) over the no-build scenario. VHD are vehicle hours traveled under congested speeds minus vehicle hours of travel under free-flow speeds on the same facility. The greatest reductions were obtained from those scenarios that included pricing and capacity additions, that pricing and light rail (−33 percent) and pricing and HOV (−37 percent), followed by the pricing and no-build scenario (−31 percent). The next greatest reduction was achieved by the super-light-rail and transit centers scenario (−6 percent), which was followed by the HOV scenario (−3 percent). The light-rail scenario produced the smallest reduction in VHD (−2 percent).

The results of the daily mode share projections for the year 2015 scenarios in the Sacramento region are presented in Table 3. In general, the scenarios that included pricing policies tended to be more effective in reducing the drive-alone mode shares and increasing shared ride, transit, walk, and bike mode shares, followed by

TABLE 3 Year 2015 Scenarios for Sacramento Region Daily Mode Share Projections

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Drive Alone (%)</th>
<th>Shared Ride (%)</th>
<th>Transit (%)</th>
<th>Walk & Bike (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No-Build</td>
<td>49.2</td>
<td>42.0</td>
<td>0.9</td>
<td>7.9</td>
</tr>
<tr>
<td>Light Rail</td>
<td>49.1 (0%)</td>
<td>41.9 (0%)</td>
<td>1.00 (1%)</td>
<td>7.9 (0%)</td>
</tr>
<tr>
<td>HOV</td>
<td>49.1 (0%)</td>
<td>42.2 (1%)</td>
<td>0.9 (0%)</td>
<td>7.8 (-1%)</td>
</tr>
<tr>
<td>Pricing & No-Build</td>
<td>43.1 (-12%)</td>
<td>45.1 (7%)</td>
<td>1.5 (67%)</td>
<td>10.3 (30%)</td>
</tr>
<tr>
<td>Pricing & Light Rail</td>
<td>42.9 (-13%)</td>
<td>44.9 (7%)</td>
<td>1.8 (100%)</td>
<td>10.3 (30%)</td>
</tr>
<tr>
<td>Pricing & HOV</td>
<td>43.1 (-12%)</td>
<td>45.1 (7%)</td>
<td>1.5 (67%)</td>
<td>10.3 (30%)</td>
</tr>
<tr>
<td>Super Light Rail & Transit Centers</td>
<td>46.0 (-2%)</td>
<td>41.4 (-1%)</td>
<td>1.6 (78%)</td>
<td>9.1 (15%)</td>
</tr>
</tbody>
</table>

* Figures in parentheses are percent change from the no-build scenario.
super-light-rail and transit centers scenario. The light-rail and HOV-lane scenarios resulted in very little overall change in mode shares from the base-case scenario.

The pricing and no-build scenario was virtually as effective in shifting mode shares as the pricing with HOV and pricing with light-rail scenarios. SACMET 94 uses an HOV lane-use model estimated from survey data that “predicts the probability that an HOV driver will utilize the freeway HOV lane based on measures of travel time savings, difficulty weaving, distance of travel on the freeway and trip purpose” (23). Thus, the effective capacity of HOV lane expansion is limited.

The percentage change in transit mode share is relatively large in scenarios with expanded transit and pricing policies, however, the transit mode share remained small compared with shares for other modes. This is because modest transit expansion in this region still leaves most households without bus and light-rail service. The super-light-rail and transit centers scenario increased the transit mode share by only 0.7 percentage points, again because of poor transit service overall. The pricing policies produced increases of an equivalent or slightly greater magnitude, suggesting that transit travel tends to be slower than automobile travel and that tolls and parking charges on cars are needed to make transit competitive.

To summarize, the scenarios that included pricing policies (with relatively large charges) produced the greatest reduction in vehicle trips, VKT, and VHD. The pricing and HOV scenario was least effective in reducing trips and VKT, however, the pricing and HOV scenarios provided the greatest reduction in VHD. The super-light-rail and transit centers scenario produced the next greatest overall reduction in VKT and VHD. The HOV and light-rail scenarios produced the smallest changes in trips, VKT, and VHD. With respect to mode share, pricing policies produced the greatest reduction in drive alone mode share and the greatest increase in shared ride, transit, walk, and bike mode share. The super-light-rail and transit centers scenario is the next most effective at shifting mode share, followed by the light-rail and HOV scenarios. The finding that the light-rail and HOV scenarios have little effect on trips, VKT, VHD, and mode share is significant because these scenarios are considered to be more politically feasible than the other scenarios examined.

Emissions

The results of the daily emissions projections for the year 2015 scenarios in the Sacramento region are presented in Table 4. In general, the pricing scenarios resulted in the greatest reductions in emissions over the no-build scenario. The pricing and HOV scenario increased the reduction of total organic gases (TOG), carbon monoxide (CO), and particulate matter (PM) and decreased the reduction in nitrogen oxides (NOx) over the other pricing scenarios. The super-light-rail and transit centers scenario was the next most effective in reducing emissions. The light-rail scenario achieved negligible reductions. The HOV lane scenario, however, resulted in an increase in all emissions.

Consumer Welfare

Results of the analysis of total consumer welfare analysis are presented in Table 5. Measures of compensating variation could be obtained only for the home-based work, shop, and other trip purposes (63 percent of the region’s total trips) because other trip purposes in SACMET 94 lacked the cost and income variables needed for the analysis. In addition, the capital, operation, maintenance, and external costs of the scenarios are not included in the analysis. As a result, the scenarios that include the light-rail, super-light-rail, and HOV projects would drop substantially in net benefits because of cost increases in all three categories.

The super-light-rail and centers scenario provided the largest benefits, $0.32 per trip, because of the reduction in transit travel time. Pricing policies combined with comparatively modest or no capacity expansion, and thus modest time savings, produced the next greatest consumer welfare benefits, ranging from $0.26 to $0.27 a trip. We assume that pricing charges from the policies are returned.

TABLE 4 Year 2015 Scenarios for Sacramento Region Daily Emissions Projections

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>TOG (metric ton)</th>
<th>CO (metric ton)</th>
<th>NOx (metric ton)</th>
<th>PM (metric ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No-Build</td>
<td>34.3</td>
<td>228.2</td>
<td>78.5</td>
<td>19.5</td>
</tr>
<tr>
<td>Light Rail</td>
<td>34.0 (0%)</td>
<td>228.2 (0%)</td>
<td>78.6 (0%)</td>
<td>19.5 (0%)</td>
</tr>
<tr>
<td>HOV</td>
<td>34.7 (1%)</td>
<td>233.9 (3%)</td>
<td>81.5 (4%)</td>
<td>20.1 (3%)</td>
</tr>
<tr>
<td>Pricing & No-Build</td>
<td>31.4 (-8%)</td>
<td>207.9 (-9%)</td>
<td>72.7 (-7%)</td>
<td>17.7 (-9%)</td>
</tr>
<tr>
<td>Pricing & Light Rail</td>
<td>31.4 (-9%)</td>
<td>208.1 (-9%)</td>
<td>72.8 (-7%)</td>
<td>17.7 (-9%)</td>
</tr>
<tr>
<td>Pricing & HOV</td>
<td>29.8 (-13%)</td>
<td>205.3 (-10%)</td>
<td>74.2 (-6%)</td>
<td>17.7 (-9%)</td>
</tr>
<tr>
<td>Super Light Rail & Transit Centers</td>
<td>33.3 (-3%)</td>
<td>220.6 (-3%)</td>
<td>75.5 (-4%)</td>
<td>18.5 (-5%)</td>
</tr>
</tbody>
</table>

* 1 metric ton = 1.1 ton

* Figures in parentheses are percent change from the no-build scenario.
The results of the daily compensating variation measure of consumer welfare by income class projections for the year 2015 scenarios in the Sacramento region are presented in Table 6. In general, income class three obtains the largest portion of the welfare gain because it has the highest income and thus makes more trips (approximately 75 percent of total trips) and has the highest value of travel time. In the pricing scenarios, the lowest income group bore losses of consumer welfare on the order of $0.24 to $0.25 per trip because of comparatively low travel time savings and low time values. All income groups benefited from the light-rail scenario and super-light-rail with transit centers scenario, however, the lowest income group benefited the least in absolute terms. The super-light-rail and transit centers scenario reduced transit travel time and reduced automobile travel, and thus automobile travel costs, to substantially benefit all classes. Generally, the losses among income groups for the HOV scenario were not significantly different.

To summarize, in the pricing policy scenarios, perceived automobile operating costs begin to approach the actual costs, resulting in more efficient use of existing and added HOV and transit capacity. When the perceived cost of travel does not match the actual cost, new HOV capacity induces additional automobile travel, the increased full cost of which exceeds the reductions in travel time cost because of the improvements. Significantly expanded transit capacity and intensified land uses serve to lower transit travel time costs and thus increase consumer welfare. Pricing policies may be inequitable with out compensatory payments (e.g., lower taxes and exemptions for certain charges) or investment programs (e.g., expanded transit).

CONCLUSIONS

A number of general conclusions about future transportation alternatives in the Sacramento region can be drawn from these findings. First, the alternatives examined in this study that would generally have the most politically feasible (i.e., the light-rail and HOV-lane scenarios) provided the best only modest improvements in congestion and emissions. Second, the consumer welfare results of the HOV-lane scenario suggest that not all roadway-capacity expansion...
sets will produce consumer benefits. Care must be taken in plan-
roadway projects to ensure that the travel time savings obtained
projects are large enough to offset the unobserved cost of addi-
tional automobile travel. Third, transits investment and support-
use intensification provide larger reductions in congestion and
ions and increase consumer welfare for all income classes.
ly, as a group, the scenarios that included aggressive pricing
ices provided the greatest reduction in travel delay and emis-
s, increased total consumer welfare, and imposed losses on the
st income group. However, it may be possible to combine pro-
policies with more significantly expanded transit and roadway
ility (than examined in this study) or compensatory payments to
ase consumer welfare for all income classes.

ACKNOWLEDGMENTS

The authors thank Gordon Garry, Bruce Gnesenbeck, and Joe
nallon at SACOG and John Gibb of DKS & Associates for
help in answering many questions about their models. Also, the
formal Energy Commission (contract 300-93-007) and Caltrans/
versity of California Path (MOU 102, Interagency Agreement
313) are acknowledged for their support of this project. Of
ese, any errors are those of the authors.

REFERENCES

Schipper, L., and S. Myers Energy Use and Human Activity Global
Developments and Prospects. Presented at Transportation Research
Board Conference on Transportation and Global Warming. Long-Range
Options, Asilomar, Calif., Aug 1991

Walsh, M. Transportation Activity Trends and Their Imagination for
Global Warming: The U S in an International Context. Presented at
Transportation Research Board Conference on Transportation and Global
Climate Change. Long-Run Options, Asilomar, Calif., Aug 1991

Wachs, M. Social Trends and Their Implications for Transportation
Planning Methods. Presented at Transportation Research Board Confer-
ence on Transportation Planning Methods, Warrennton, Va., Nov 1981

Choice Models Econometrica, Vol 49, No 3, Jan 1981, pp 105-130

Newman, P. W. G., and J. R. Kenworthy Cities and Automobile Depend-

Webster, F. V., P. H. By, and N. J. Paulley Urban Land-Use and Trans-
port Interaction Policies and Models Avebury, Brookfield, Mass., 1988

Watterson, W. Linked Simulation of Land Use and Transportation Sys-
tems Developments and Experience in the Puget Sound Region. Pre-
sented at Conference on Transportation and Global Climate Change
Long-Run Options, Transportation Research Board, Asilomar, Calif.,
Aug 1991

Natural Resources Defense Council and the Sierra Club Explaining
Urban Density and Transit Impacts on Auto Use. Docket No 89-9-CR-90,
California Energy Commission, Sacramento, Calif., Jan 1991

Sewell, W. R. D., and H. D. Foster Analysis of the United States Experience
in Modifying Land Use to Conserve Energy. Working Paper No 2,
Lands Directorate, Canada, 1980

Replin, M. Computer Transportation Models for Land Use Regulation
and Master Planning in Montgomery County, Maryland. Transportation Research Record 1262, TRB, National Research Council,
Washington, D.C., 1990, pp 91-100

Cameron, M. Transportation Efficiency: Tackling Southern California's Air Pollution and Congestion. Environmental Defense Fund, Los
Angeles, March 1991

Wilson, R. W., and D. C. Shoup Employer-Paid Parking. The Problem
and Proposed Solutions. Presented at Association for Commuter
Transportation Conference, Seattle, Wash., Dec 1990

May, J. H., and G. J. Scheuermahl Land Use, Transportation, and Air
Quality Scenosty Analysis. Presented at Transportation Research
Board Annual Meeting, Washington, D.C., Jan 1991

Jones, P. A Review of Available Evidence on Public Reactions for Road
Pricing. London Transport Unit, Department of Transport (2 Manneh
St., London SWIIP-3EB), 1992

Mogridge, M. J. H. Road Pricing: The Right Solution for the Right
Problems? Transportation Research A, Vol 20, No 2, March 1986,
pp 157-167

Morrison, S. A. Survey of Road Pricing. Transportation Research A
Vol 20, No 2, 1986, pp 87-97

Starkie, D. Efficient and Politic Congestion Pricing. Transportation

Small, K. A. The Incidence of Congestion Tolls on Urban Highways

Small, K. A., C. Winston, and C. Evans Road Work A New Highway
Pricing and Investment Policy. Brookings Institution, Washington
D.C., 1989

Small, K. A. Using the Revenues from Congestion Pricing. A Southern
California Case Study. Reason Foundation Department of Economics,
University of California, Irvine, Aug 17, 1992

Sacramento, Calif., Oct 1994

Small, K. A. Urban Transportation Economics. Harwood Academic
Press, 1992